

January 2018

M. B. A. (International Business) Examination

(New) First Semester

913 : QUANTITATIVE TECHNIQUES AND STATISTICAL METHODS

Time 3 Hours

[Max. Marks 85

Note: Attempt any three questions from Section A and attempt any two questions from Section B. Each question carries equal marks.

Section A

 Use Big-M (penalty) method to solve the following linear programming problem: $Minimize (z) = 5x_1 + 3x_2$

Subject to the constraints: $2x_1 + 4x_2 \le 12$

$$2x_1 + 2x_2 = 10$$

$$5x_1 + 2x_2 \ge 10$$

and
$$x_1, x_2 \ge 0$$
.

2. Apply MODI method to obtain optimal solution of transportation problem, using the data given below: https://www.davvonline.com

Destination Source	D ₁	D ₂	D ₃	$\mathbf{D_4}$	Supply
s ₁	19	30	50	10	07
S_2	70	30	40	60	09
S_3	40	08	70	20	18
Demand	05	08	07	14	34

 ${\cal J}$. In the modification of a plant layout of a factory four new machine ${
m M}_1$, ${
m M}_2$, ${
m M}_3$ and ${
m M}_4$ are to be installed in a machine shop. There are five vacant places A, B, C, D and E available. Because of limited space, machine M2 cannot be placed at C and M3 cannot be placed at A. The cost of locating a machine at a place (in hundred rupees) is as follows:

		Location						
		Α	В	C	D	E		
Machine	M ₁	9	11	15	10	11		
	M_2	12	9	×	10 ,	9	1	
	M_3	×	11	14	11	7	١	
	M ₄	14	8	12	7	8	j	

Find the optimal assignment schedule.

(a)

Solve the following game using graphical method : B's Strategy

		$\mathtt{B}_\mathtt{1}$	B ₂	B ₃	B_4
A's Strategy	A ₁	8	5	-7	9
	Λ_2	6	6	4	-2

(b)

B's Strategy

	A	В ₁	В ₂
A's Strategy	A ₁	-7	6
	A_2	7	-4
	A ₃	-4	-2
	A ₄	8	-6

5 A project consists of nine activities whose time estimates (in weeks) and other characteristics are given below:

• •	Preceding	Time Estimates (weeks)					
	Activity	Most Optimistic	Most Likely	Most Pessimisti			
	-	2	4	6			
В	_	6	6	6			
C	_	6	12	24			
. D	A	2	5	. 8			
E	A	11	14	23			
F	B, D	8	10	12			
G	B, D	3	6	9			
H	C, F	9	. 15	27			
1	E	4 .	10	16			

- (a) Show the PERT network for the project.
- (b) Identify the critical activities.
- (c) What is the expected project completion time and its variance?
- (d) What is the probability of completing the project one week before the expected time?

Section B

6 Find the correlation coefficient between age and playing habits of the following students :

Age (Years)	:	15	16	17	18	19	20
No. of Students	:	250	200	150	120	100	80
Regular Players	:	200	150	90	48	30	12

Also calculate probable error and point out whether coefficient of correlation is significant.

- 7. Define Statistical Inference. Explain the significant importance of statistical inference methods in business management.
- 8. Write short notes on any three of the following:
 - (a) Measures of Dispersion.
 - (b) Level of significance and its use in hypothesis testing.
 - (e) Sampling and its types.
 - (d) F-test and T-test, its scope in international business.