March - April 2022

Bachelor of Computer Applications (BCA) Examination

Fifth Semester

BCA-501: LINEAR ALGEBRA AND GEOMETRY

Time 3 Hours]

[Max. Marks 40 [Min. Marks 13

Note: Attempt any two sub-parts of a questions. All questions carry equal marks.

- 1. Solve any two parts:
 - (a) If G be the set of the non-zero real numbers and let $a * b = \frac{ab}{3}$ then show that (G, *) is an abelian group.
 - (b) State and prove Lagrange's Theorem.
 - (c) The homomorphism $f: G \to G'$ is an isomorphism if and only if $Kerf = \{e\}$.
- 2. Solve any two parts:
 - (a) The necessary and sufficient condition for a non-empty subset W of a vector space V(F) to be a vector subspace of V is $a, b \in f$ and $\alpha, \beta \in W \Rightarrow a\alpha + b\beta \in W$.
 - (b) Show that the vectors (2, 1, 4), (1, -1, 2), (3, 1, -2) form a basis for \mathbb{R}^3 .
 - Show that the mapping $f: V_3(R) \to V_2(R)$ defined by f(a, b, c) = (c, a + b) is a linear transformation.
- Solve any two parts :
 - Show that the mapping $T: V_2(R) \to V_3(R)$ defined by T: (a, b) = (a + b, a b, b) is a linear transformation from $V_2(R)$ into $V_3(R)$. Find the range, rank, nullspace and nullity of T.
 - (b) Find the matrix of the following linear maps with respect to the standard basis of R^3 . $T: R^3 \to R^3$ defined by T(x, y, z) = (z, y + z, x + y + z).
 - (c) Find the characteristic roots and corresponding characteristic vectors of the matrix:

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}.$$

- Solve any two parts :
 - (a) Show that the point (5, -2, 3) lies on the Paraboloid $2x^2 5y^2 = 10z$. Find the tangent plane and the normal line at this point.
 - (b) Find the equations of the tangent planes to the ellipsoid $7x^2 + 5y^2 + 3z^2 = 60$ which pass through the line 7x + 10y = 30, 5y 3z = 0.
 - (c) Find the equation of the normal to a ellipsoid at the point (α, β, γ) .
- Solve any two parts:
 - Prove the condition that the plane ax + by + cz = 0 may cut the cone xy + yz + zx = 0 in perpendicular lines is $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$.
 - (b) Find the equation of the right circular cone whose axis x = y = z. Vertex is origin and whose semi-vertical angle is 45°.
 - Find the equation to the cylinder whose generators are parallel to the line $x = \frac{y}{-2} = \frac{z}{3}$ and the guiding curve is the ellipse $x^2 + 2y^2 = 1$, z = 3.