December 2007

Bachelor of Computer Application (BCA) Examination V Semester

Discrete Mathematics and Linear Algebra

Time: 3 Hours]

[Max. Marks : 40

Note: Solve any two parts from each question. All questions carry equal marks.

- 1. (a) Define Universal and Existential Quantifiers. Give examples of each. Explain Negation of Quantifiers.
 - (b) Verify following relations using truth tables:

(i)
$$(p \rightarrow q) = (\sim p \lor q)$$
 (ii) $(p \rightarrow (Q \rightarrow R)) = (((p \land Q) \rightarrow R).$

(c) Draw a circuit for following Boolean function and replace it by simpler one:

$$F(x, y, z) = [(x + y) - (z + y)] + [y \cdot (x' + z')].$$

- 2. (a) Obtain conjunctive normal form of $-(p \lor q) \Leftrightarrow (p \land Q)$.
 - (b) Obtain disjunctive normal form of $-(p \lor q) \Leftrightarrow (p \land Q)$
 - (c) State and prove Bools expansion theorem.
- 3. (a) State and prove Lagrange's theorem.
 - (b) Define a normal sub group of a group. Give an example-Justify your answer.
 - (c) Let Z. be a ring of integers and let p be a prime number. Define a mapping $f: Z \to Z$ such that f(n) = np for all $n \in Z$. Show that f_{is} homomorphis in. Find kernel of f.
- 4. (a) Define a set of linearly independent vectors in a vector space. Whether (1, 1, 2), (1, 3, 0) and (2, 0, 4) are linearly independent in \mathbb{R}^3 ?
 - (b) Find the range and the kernel of the linear transformation $f: R^3 \to R^3$ defined as f(x, y, z) = (x + y, y, y + z) First, show that it is a linear transformation.
 - (c) Define range and kernel of a linear transformation. Show that a range is a subspace of co-domain.

5.		Write a matrix of a linear transformation given in Q. 4(b) with
		respect to standard bases Find rank and nullity.

(b) Find all eigen values and eigen vectors of the matrix:

$$\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

1_	\ C+-+	1	\sim 1	T T -11	on theorem
		5 211 12 12 12 12	ive Cane	V-1 1631111111	361 II IPC 31P(1)

_	_	_
	, .	,
	1 .	1 1