February 2014

Bachelor of Computer Applications (BCA) Examination

I Semester

Mathematics-I

Time 3 Hours]

[Max. Marks 40

Note: All questions are compulsory. Solve any two parts from each question. Each question carries equal marks.

- 1. Solve any two parts from each questions:
 - (a) Evaluate $\lim_{x\to\infty} \frac{x^2 2x + 1}{x^2 + 2x 2}$
 - (b) Find $\frac{dy}{dx}$ if $y = \frac{1 \cos x}{1 + \cos x}$
 - (c) Verify the continuity:

$$f(x) = \begin{cases} \frac{x^2 - 1}{x + 1} & ; & x \neq 1 \\ 2 & ; & x = 1 \end{cases}$$

- 2. (a) Expand $\sin x$ by Taylor's theorem in the person of $(x \pi/2)$.
 - (b) Verify Rolle's theorem $f(x) = (x-a)^m (x-b)^n$ in [a, b].
 - (c) Expand tan-1 x by Maclarin's theorem.
- 3. (a) Find the asymptotes of the curve:

$$y^3 - x^2y + 2y^2 + 4y + x = 0$$

- (b) Show that the radius of curvature of catenary $y = c \cosh x/c$ at the point (x, y) is y^2/c .
- (c) Evaluate $\int \sin^n x \, dx$.
- 4. (a) Eva uate: grad rn.
 - (b) If $\vec{F} = x^2 i + xzj + 2yzk$ then find div (curl \vec{F})
 - (c) Find the directional derivations of functions $\phi = x^2 y^2 + 2z^2$ at the point P (1, 2, 3) in the direction of PQ, where Q the coordinate of Q is (5, 0, 4).

http://www.davvonline.com

http://www.davvonline.com

5. (a) Find the inverse of the matrix:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 2 \\ 2 & 4 & -1 \end{bmatrix}$$

(b) Find the rank if matrix:

$$A = \begin{bmatrix} 1 & 3 & 2 & 4 \\ 1 & -1 & 0 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$

(c) Solve the system of equations:

$$x + y + z = 9$$

 $x + 2y + 3z = 6$
 $x + y - 3z = 2$.

000