http://www.davvonline.com

January 2016

· Bachelor of Computer Applications (BCA) Examination

I Semester

Mathematics - I

Time: 3 Hours]

[Max. Marks : 40

Note: All questions are compulsory Solve any two parts from each question. Each question carries equal marks.

- 1. (a) If $f(x) = \frac{x^2 3x + 2}{x 2}$, find the limit of f(x) as x tends to 2.
 - (b) Test the continuity of the following function at x = 0:

$$F(x) = \begin{cases} x.\sin\frac{1}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$$

- (c) Show that $f(x) = x^2$ is differentiable at x = 1 and also find f'(1).
- 2. (a) Expand $\tan^{-1(x)}$ in power of $(x \pi/4)$.
 - (b) Apply Maclaurin's theorem to prove that:

$$\log \sec x = \frac{1}{2}x^2 + \frac{1}{12}x^4 + \frac{1}{45}x^6 + \dots$$

- (c) If $y = A \sin mx + B \cos mx$, then prove that $y^2 + m^2y = 0$.
- 3. (a) Find the asymptotes of the curve $x^3 + 2x^2y xy^2 2y^3 + 3xy + 3y^2 + x + 1 = 0$.
 - (b) Prove that the radius of curvature at point (a $\cos^3 \theta$, a $\sin^3 \theta$) of the curve $x^{2/3} + y^{2/3} = a^{2/3}$ is $3a \sin \theta \cos \theta$.
 - (c) Find the equation of the tangent at point t the following curve: t a t + t the following curve: t = t the following curve:
- 4. (a) Show tat div $\hat{r} = \frac{2}{r}$.
 - (b) Prove that div $(A \times B) = B$. curl A A. curl B.
 - (c) Find the direction derivative of the function $\phi = (x^2 + y^2 + z^2)^{1/2}$ at the point (3, 12) in the direction $yz \hat{i} + zx \hat{j} + xy \hat{k}$.
- 5. (a) Find the rank and nullity of the matrix A:

where
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 7 \\ 3 & 3 & 0 \end{bmatrix}$$

http://www.davvonline.com

http://www.davvonline.com

(b) Prove that following equations are consistent and solve them:

$$x-y+z=2$$

 $3x-y+2z=-6$
 $3x+y+z=-18$

(c) Show that the following equations are inconsistent:

$$x + y + z = 3$$

 $3x + y + 2z = -2$
 $2x + 4y + 7z = 7$

000